Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nature of Electric and Magnetic Dipoles Gleaned from the Poynting Theorem and the Lorentz Force Law of Classical Electrodynamics (1208.0873v1)

Published 4 Aug 2012 in physics.optics and physics.class-ph

Abstract: Starting with the most general form of Maxwell's macroscopic equations in which the free charge and free current densities, rho_free and J_free, as well as the densities of polarization and magnetization, P and M, are arbitrary functions of space and time, we compare and contrast two versions of the Poynting vector, namely, S=ExB/mu_0 and S=ExH. Here E is the electric field, H the magnetic field, B the magnetic induction, and mu_0 the permeability of free space. We argue that the identification of one or the other of these Poynting vectors with the rate of flow of electromagnetic energy is intimately tied to the nature of magnetic dipoles and the way in which these dipoles exchange energy with the electromagnetic field. In addition, the manifest nature of both electric and magnetic dipoles in their interactions with the electromagnetic field has consequences for the Lorentz law of force. If the conventional identification of magnetic dipoles with Amperian current loops is extended beyond Maxwell's macroscopic equations to the domain where energy, force, torque, momentum, and angular momentum are active participants, it will be shown that "hidden energy" and "hidden momentum" become inescapable consequences of such identification with Amperian current loops. Hidden energy and hidden momentum can be avoided, however, if we adopt S=ExH as the true Poynting vector, and also accept a generalized version of the Lorentz force law. We conclude that the identification of magnetic dipoles with Amperian current loops, while certainly acceptable within the confines of Maxwell's macroscopic equations, is inadequate and leads to complications when considering energy, force, torque, momentum, and angular momentum in electromagnetic systems that involve the interaction of fields and matter.

Summary

We haven't generated a summary for this paper yet.