Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torsion pairs and simple-minded systems in triangulated categories (1207.7338v3)

Published 31 Jul 2012 in math.RT

Abstract: Let T be a Hom-finite triangulated Krull-Schmidt category over a field k. Inspired by a definition of Koenig and Liu, we say that a family S of pairwise orthogonal objects in T with trivial endomorphism rings is a simple-minded system if its closure under extensions is all of T. We construct torsion pairs in T associated to any subset X of a simple-minded system S, and use these to define left and right mutations of S relative to X. When T has a Serre functor \nu, and S and X are invariant under \nu[1], we show that these mutations are again simple-minded systems. We are particularly interested in the case where T is the stable module category of a self-injective algebra \Lambda. In this case, our mutation procedure parallels that introduced by Koenig and Yang for simple-minded collections in the derived category of \Lambda. It follows that the mutation of the set of simple \Lambda-modules relative to X yields the images of the simple \Gamma-modules under a stable equivalence between \Gamma\ and \Lambda, where \Gamma\ is the tilting mutation of \Lambda\ relative to X.

Summary

We haven't generated a summary for this paper yet.