2000 character limit reached
On the Odlyzko-Stanley enumeration problem and Waring's problem over finite fields (1207.6939v1)
Published 30 Jul 2012 in math.NT and math.CO
Abstract: We obtain an asymptotic formula on the Odlyzko-Stanley enumeration problem. Let $N_m*(k,b)$ be the number of $k$-subsets $S\subseteq F_p*$ such that $\sum_{x\in S}xm=b$. If $m<p^{1-\delta}$, then there is a constant $\epsilon=\epsilon(\delta)\>0$ such that | N_m*(k,b)-p{-1}{p-1 \choose k}|\leq {p{1-\epsilon}+mk-m \choose k}. In addition, let $\gamma'(m,p)$ denote the distinct Waring's number $(\mod p)$, the smallest positive integer $k$ such that every integer is a sum of m-th powers of $k$-distinct elements $(\mod p)$. The above bound implies that there is a constant $\epsilon(\delta)>0$ such for any prime $p$ and any $m<p{1-\delta}$, if $\epsilon{-1}<(e-1)p{\delta-\epsilon}$, then $$\gamma'(m,p)\leq \epsilon{-1}.$$