Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Odlyzko-Stanley enumeration problem and Waring's problem over finite fields (1207.6939v1)

Published 30 Jul 2012 in math.NT and math.CO

Abstract: We obtain an asymptotic formula on the Odlyzko-Stanley enumeration problem. Let $N_m*(k,b)$ be the number of $k$-subsets $S\subseteq F_p*$ such that $\sum_{x\in S}xm=b$. If $m<p^{1-\delta}$, then there is a constant $\epsilon=\epsilon(\delta)\>0$ such that | N_m*(k,b)-p{-1}{p-1 \choose k}|\leq {p{1-\epsilon}+mk-m \choose k}. In addition, let $\gamma'(m,p)$ denote the distinct Waring's number $(\mod p)$, the smallest positive integer $k$ such that every integer is a sum of m-th powers of $k$-distinct elements $(\mod p)$. The above bound implies that there is a constant $\epsilon(\delta)>0$ such for any prime $p$ and any $m<p{1-\delta}$, if $\epsilon{-1}<(e-1)p{\delta-\epsilon}$, then $$\gamma'(m,p)\leq \epsilon{-1}.$$

Summary

We haven't generated a summary for this paper yet.