Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Series of Abelian and Non-Abelian States in C>1 Fractional Chern Insulators (1207.6385v2)

Published 26 Jul 2012 in cond-mat.str-el

Abstract: We report the observation of a new series of Abelian and non-Abelian topological states in fractional Chern insulators (FCI). The states appear at bosonic filling nu= k/(C+1) (k, C integers) in several lattice models, in fractionally filled bands of Chern numbers C>=1 subject to on-site Hubbard interactions. We show strong evidence that the k=1 series is Abelian while the k>1 series is non-Abelian. The energy spectrum at both groundstate filling and upon the addition of quasiholes shows a low-lying manifold of states whose total degeneracy and counting matches, at the appropriate size, that of the Fractional Quantum Hall (FQH) SU(C) (color) singlet k-clustered states (including Halperin, non-Abelian spin singlet states and their generalizations). The groundstate momenta are correctly predicted by the FQH to FCI lattice folding. However, the counting of FCI states also matches that of a spinless FQH series, preventing a clear identification just from the energy spectrum. The entanglement spectrum lends support to the identification of our states as SU(C) color-singlets but offers new anomalies in the counting for C>1, possibly related to dislocations that call for the development of new counting rules of these topological states.

Summary

We haven't generated a summary for this paper yet.