Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian inference for Gibbs random fields using composite likelihoods (1207.5758v1)

Published 24 Jul 2012 in stat.CO

Abstract: Gibbs random fields play an important role in statistics, for example the autologistic model is commonly used to model the spatial distribution of binary variables defined on a lattice. However they are complicated to work with due to an intractability of the likelihood function. It is therefore natural to consider tractable approximations to the likelihood function. Composite likelihoods offer a principled approach to constructing such approximation. The contribution of this paper is to examine the performance of a collection of composite likelihood approximations in the context of Bayesian inference.

Summary

We haven't generated a summary for this paper yet.