Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Inverse Frequent Itemset Mining: Privacy, Complexity, and Approximation (1207.5466v1)

Published 23 Jul 2012 in cs.DB

Abstract: In order to generate synthetic basket data sets for better benchmark testing, it is important to integrate characteristics from real-life databases into the synthetic basket data sets. The characteristics that could be used for this purpose include the frequent itemsets and association rules. The problem of generating synthetic basket data sets from frequent itemsets is generally referred to as inverse frequent itemset mining. In this paper, we show that the problem of approximate inverse frequent itemset mining is {\bf NP}-complete. Then we propose and analyze an approximate algorithm for approximate inverse frequent itemset mining, and discuss privacy issues related to the synthetic basket data set. In particular, we propose an approximate algorithm to determine the privacy leakage in a synthetic basket data set.

Citations (37)

Summary

We haven't generated a summary for this paper yet.