Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranked Document Retrieval in (Almost) No Space (1207.5425v1)

Published 23 Jul 2012 in cs.IR and cs.DB

Abstract: Ranked document retrieval is a fundamental task in search engines. Such queries are solved with inverted indexes that require additional 45%-80% of the compressed text space, and take tens to hundreds of microseconds per query. In this paper we show how ranked document retrieval queries can be solved within tens of milliseconds using essentially no extra space over an in-memory compressed representation of the document collection. More precisely, we enhance wavelet trees on bytecodes (WTBCs), a data structure that rearranges the bytes of the compressed collection, so that they support ranked conjunctive and disjunctive queries, using just 6%-18% of the compressed text space.

Citations (5)

Summary

We haven't generated a summary for this paper yet.