Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of the monotonicity by the inequality (1207.5201v1)

Published 22 Jul 2012 in math.FA and math.OA

Abstract: Let $\varphi$ be a normal state on the algebra $B(H)$ of all bounded operators on a Hilbert space $H$, $f$ a strictly positive, continuous function on $(0, \infty)$, and let $g$ be a function on $(0, \infty)$ defined by $g(t) = \frac{t}{f(t)}$. We will give characterizations of matrix and operator monotonicity by the following generalized Powers-St\ormer inequality: $$ \varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)1/2g(B)f(A)1/2), $$ whenever $A, B$ are positive invertible operators in $B(H).$

Summary

We haven't generated a summary for this paper yet.