Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elliptic Curves with Full 2-Torsion and Maximal Adelic Galois Representations (1207.5169v2)

Published 21 Jul 2012 in math.NT

Abstract: In 1972, Serre showed that the adelic Galois representation associated to a non-CM elliptic curve over a number field has open image in GL_2(\hat{Z}). In Greicius' thesis, he develops necessary and sufficient criteria for determining when this representation is actually surjective and exhibits such an example. However, verifying these criteria turns out to be difficult in practice; Greicius describes tests for them that apply only to semistable elliptic curves over a specific class of cubic number fields. In this paper, we extend Greicius' methods in several directions. First, we consider the analogous problem for elliptic curves with full 2-torsion. Following Greicius, we obtain necessary and sufficient conditions for the associated adelic representation to be maximal and also develop a battery of computationally effective tests that can be used to verify these conditions. We are able to use our tests to construct an infinite family of curves over Q(alpha) with maximal image, where alpha is the real root of x3 + x + 1. Next, we extend Greicius' tests to more general settings, such as non-semistable elliptic curves over arbitrary cubic number fields. Finally, we give a general discussion concerning such problems for arbitrary torsion subgroups.

Summary

We haven't generated a summary for this paper yet.