Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-finite axiomatizability of Dynamic Topological Logic (1207.5140v1)

Published 21 Jul 2012 in math.LO and cs.LO

Abstract: Dynamic topological logic (DTL) is a polymodal logic designed for reasoning about {\em dynamic topological systems. These are pairs (X,f), where X is a topological space and f:X->X is continuous. DTL uses a language L which combines the topological S4 modality [] with temporal operators from linear temporal logic. Recently, I gave a sound and complete axiomatization DTL* for an extension of the logic to the language L*, where <> is allowed to act on finite sets of formulas and is interpreted as a tangled closure operator. No complete axiomatization is known over L, although one proof system, which we shall call $\mathsf{KM}$, was conjectured to be complete by Kremer and Mints. In this paper we show that, given any language L' between L and L*, the set of valid formulas of L' is not finitely axiomatizable. It follows, in particular, that KM is incomplete.

Citations (14)

Summary

We haven't generated a summary for this paper yet.