Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Inference on Time Series using Structural Equation Models (1207.5136v1)

Published 21 Jul 2012 in stat.ML, cs.LG, and stat.ME

Abstract: Causal inference uses observations to infer the causal structure of the data generating system. We study a class of functional models that we call Time Series Models with Independent Noise (TiMINo). These models require independent residual time series, whereas traditional methods like Granger causality exploit the variance of residuals. There are two main contributions: (1) Theoretical: By restricting the model class (e.g. to additive noise) we can provide a more general identifiability result than existing ones. This result incorporates lagged and instantaneous effects that can be nonlinear and do not need to be faithful, and non-instantaneous feedbacks between the time series. (2) Practical: If there are no feedback loops between time series, we propose an algorithm based on non-linear independence tests of time series. When the data are causally insufficient, or the data generating process does not satisfy the model assumptions, this algorithm may still give partial results, but mostly avoids incorrect answers. An extension to (non-instantaneous) feedbacks is possible, but not discussed. It outperforms existing methods on artificial and real data. Code can be provided upon request.

Citations (19)

Summary

We haven't generated a summary for this paper yet.