Torus knots and the rational DAHA
Abstract: We conjecturally extract the triply graded Khovanov-Rozansky homology of the (m, n) torus knot from the unique finite dimensional simple representation of the rational DAHA of type A, rank n - 1, and central character m/n. The conjectural differentials of Gukov, Dunfield and the third author receive an explicit algebraic expression in this picture, yielding a prescription for the doubly graded Khovanov-Rozansky homologies. We match our conjecture to previous conjectures of the first author relating knot homology to q, t-Catalan numbers, and of the last three authors relating knot homology to Hilbert schemes on singular curves.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.