Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Choice of Regions for Generalized Belief Propagation (1207.4158v1)

Published 11 Jul 2012 in cs.AI and cs.LG

Abstract: Generalized belief propagation (GBP) has proven to be a promising technique for approximate inference tasks in AI and machine learning. However, the choice of a good set of clusters to be used in GBP has remained more of an art then a science until this day. This paper proposes a sequential approach to adding new clusters of nodes and their interactions (i.e. "regions") to the approximation. We first review and analyze the recently introduced region graphs and find that three kinds of operations ("split", "merge" and "death") leave the free energy and (under some conditions) the fixed points of GBP invariant. This leads to the notion of "weakly irreducible" regions as the natural candidates to be added to the approximation. Computational complexity of the GBP algorithm is controlled by restricting attention to regions with small "region-width". Combining the above with an efficient (i.e. local in the graph) measure to predict the improved accuracy of GBP leads to the sequential "region pursuit" algorithm for adding new regions bottom-up to the region graph. Experiments show that this algorithm can indeed perform close to optimally.

Citations (74)

Summary

We haven't generated a summary for this paper yet.