Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surrogate Losses in Passive and Active Learning (1207.3772v4)

Published 16 Jul 2012 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Active learning is a type of sequential design for supervised machine learning, in which the learning algorithm sequentially requests the labels of selected instances from a large pool of unlabeled data points. The objective is to produce a classifier of relatively low risk, as measured under the 0-1 loss, ideally using fewer label requests than the number of random labeled data points sufficient to achieve the same. This work investigates the potential uses of surrogate loss functions in the context of active learning. Specifically, it presents an active learning algorithm based on an arbitrary classification-calibrated surrogate loss function, along with an analysis of the number of label requests sufficient for the classifier returned by the algorithm to achieve a given risk under the 0-1 loss. Interestingly, these results cannot be obtained by simply optimizing the surrogate risk via active learning to an extent sufficient to provide a guarantee on the 0-1 loss, as is common practice in the analysis of surrogate losses for passive learning. Some of the results have additional implications for the use of surrogate losses in passive learning.

Citations (16)

Summary

We haven't generated a summary for this paper yet.