Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Birth and death processes on certain random trees: Classification and stationary laws (1207.3664v1)

Published 16 Jul 2012 in math.PR

Abstract: The main substance of the paper concerns the growth rate and the classification (ergodicity, transience) of a family of random trees. In the basic model, new edges appear according to a Poisson process of parameter $\lambda$ and leaves can be deleted at a rate $\mu$. The main results lay the stress on the famous number $e$. A complete classification of the process is given in terms of the intensity factor $\rho=\lambda/\mu $: it is ergodic if $\rho\leq e{-1}$, and transient if $\rho>e{-1}$. There is a phase transition phenomenon: the usual region of null recurrence (in the parameter space) here does not exist. This fact is rare for countable Markov chains with exponentially distributed jumps. Some basic stationary laws are computed, e.g. the number of vertices and the height. Various bounds, limit laws and ergodic-like theorems are obtained, both for the transient and ergodic regimes. In particular, when the system is transient, the height of the tree grows linearly as the time $t\to\infty$, at a rate which is explicitly computed. Some of the results are extended to the so-called multiclass model.

Summary

We haven't generated a summary for this paper yet.