Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence to Scattering States in the Nonlinear Schrödinger Equation (1207.2034v1)

Published 9 Jul 2012 in math.AP

Abstract: In this paper, we consider global solutions of the following nonlinear Schr\"odinger equation $iu_t+\Delta u+\lambda|u|\alpha u = 0,$ in $\RN,$ with $\lambda\in\R,$ $\alpha\in(0,\frac{4}{N-2})$ $(\alpha\in(0,\infty)$ if $N=1)$ and \linebreak $u(0)\in X\equiv H1(\RN)\cap L2(|x|2;dx).$ We show that, under suitable conditions, if the solution $u$ satisfies $e{-it\Delta}u(t)-u_ \pm\to0$ in $X$ as $t\to\pm\infty$ then $u(t)-e{it\Delta}u_\pm\to0$ in $X$ as $t\to\pm\infty.$ We also study the converse. Finally, we estimate $|:|u(t)|X-|e{it\Delta}u\pm|_X:|$ under some less restrictive assumptions.

Summary

We haven't generated a summary for this paper yet.