Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jigsaw percolation: What social networks can collaboratively solve a puzzle? (1207.1927v3)

Published 9 Jul 2012 in math.PR, cond-mat.dis-nn, cs.SI, and physics.soc-ph

Abstract: We introduce a new kind of percolation on finite graphs called jigsaw percolation. This model attempts to capture networks of people who innovate by merging ideas and who solve problems by piecing together solutions. Each person in a social network has a unique piece of a jigsaw puzzle. Acquainted people with compatible puzzle pieces merge their puzzle pieces. More generally, groups of people with merged puzzle pieces merge if the groups know one another and have a pair of compatible puzzle pieces. The social network solves the puzzle if it eventually merges all the puzzle pieces. For an Erd\H{o}s-R\'{e}nyi social network with $n$ vertices and edge probability $p_n$, we define the critical value $p_c(n)$ for a connected puzzle graph to be the $p_n$ for which the chance of solving the puzzle equals $1/2$. We prove that for the $n$-cycle (ring) puzzle, $p_c(n)=\Theta(1/\log n)$, and for an arbitrary connected puzzle graph with bounded maximum degree, $p_c(n)=O(1/\log n)$ and $\omega(1/nb)$ for any $b>0$. Surprisingly, with probability tending to 1 as the network size increases to infinity, social networks with a power-law degree distribution cannot solve any bounded-degree puzzle. This model suggests a mechanism for recent empirical claims that innovation increases with social density, and it might begin to show what social networks stifle creativity and what networks collectively innovate.

Citations (24)

Summary

We haven't generated a summary for this paper yet.