Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Rectifiability and Harmonic Measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains (1207.1527v2)

Published 6 Jul 2012 in math.CA and math.AP

Abstract: Let $E\subset \mathbb{R}{n+1}$, $n\ge 2$, be a closed, Ahlfors-David regular set of dimension $n$ satisfying the "Riesz Transform bound" $$\sup_{\varepsilon>0}\int_E\left|\int_{{y\in E:|x-y|>\varepsilon}}\frac{x-y}{|x-y|{n+1}} f(y) dHn(y)\right|2 dHn(x) \leq C \int_E|f|2 dHn.$$ Assume further that $E$ is the boundary of a domain $\Omega\subset \mathbb{R}{n+1}$ satisfying the Harnack Chain condition plus an interior (but not exterior) Corkscrew condition. Then $E$ is uniformly rectifiable.

Summary

We haven't generated a summary for this paper yet.