Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Planning in POMDPs Using Multiplicity Automata (1207.1388v1)

Published 4 Jul 2012 in cs.AI and cs.FL

Abstract: Planning and learning in Partially Observable MDPs (POMDPs) are among the most challenging tasks in both the AI and Operation Research communities. Although solutions to these problems are intractable in general, there might be special cases, such as structured POMDPs, which can be solved efficiently. A natural and possibly efficient way to represent a POMDP is through the predictive state representation (PSR) - a representation which recently has been receiving increasing attention. In this work, we relate POMDPs to multiplicity automata- showing that POMDPs can be represented by multiplicity automata with no increase in the representation size. Furthermore, we show that the size of the multiplicity automaton is equal to the rank of the predictive state representation. Therefore, we relate both the predictive state representation and POMDPs to the well-founded multiplicity automata literature. Based on the multiplicity automata representation, we provide a planning algorithm which is exponential only in the multiplicity automata rank rather than the number of states of the POMDP. As a result, whenever the predictive state representation is logarithmic in the standard POMDP representation, our planning algorithm is efficient.

Citations (13)

Summary

We haven't generated a summary for this paper yet.