Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Bayesian Network Approximation by Edge Deletion (1207.1370v1)

Published 4 Jul 2012 in cs.AI

Abstract: We consider the problem of deleting edges from a Bayesian network for the purpose of simplifying models in probabilistic inference. In particular, we propose a new method for deleting network edges, which is based on the evidence at hand. We provide some interesting bounds on the KL-divergence between original and approximate networks, which highlight the impact of given evidence on the quality of approximation and shed some light on good and bad candidates for edge deletion. We finally demonstrate empirically the promise of the proposed edge deletion technique as a basis for approximate inference.

Citations (28)

Summary

We haven't generated a summary for this paper yet.