Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying all abelian periods of a string in quadratic time and relevant problems (1207.1307v1)

Published 5 Jul 2012 in cs.DS

Abstract: Abelian periodicity of strings has been studied extensively over the last years. In 2006 Constantinescu and Ilie defined the abelian period of a string and several algorithms for the computation of all abelian periods of a string were given. In contrast to the classical period of a word, its abelian version is more flexible, factors of the word are considered the same under any internal permutation of their letters. We show two O(|y|2) algorithms for the computation of all abelian periods of a string y. The first one maps each letter to a suitable number such that each factor of the string can be identified by the unique sum of the numbers corresponding to its letters and hence abelian periods can be identified easily. The other one maps each letter to a prime number such that each factor of the string can be identified by the unique product of the numbers corresponding to its letters and so abelian periods can be identified easily. We also define weak abelian periods on strings and give an O(|y|log(|y|)) algorithm for their computation, together with some other algorithms for more basic problems.

Citations (8)

Summary

We haven't generated a summary for this paper yet.