Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bond disorder induced criticality of the three-color Ashkin-Teller model (1207.1080v1)

Published 4 Jul 2012 in cond-mat.dis-nn

Abstract: An intriguing result of statistical mechanics is that a first-order phase transition can be rounded by disorder coupled to energy-like variables. In fact, even more intriguing is that the rounding may manifest itself as a critical point, quantum or classical. In general, it is not known, however, what universality classes, if any, such criticalities belong to. In order to shed light on this question we examine in detail the disordered three-color Ashkin-Teller model by Monte Carlo methods. Extensive analyses indicate that the critical exponents define a new universality class. We show that the rounding of the first-order transition of the pure model due to the impurities is manifested as criticality. However, the magnetization critical exponent, (\beta), and the correlation length critical exponent, (\nu), are found to vary with disorder and the four-spin coupling strength, and we conclusively rule out that the model belongs to the universality class of the two-dimensional Ising model.

Summary

We haven't generated a summary for this paper yet.