Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized Runtime Analyses of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem (1207.0578v2)

Published 3 Jul 2012 in cs.NE and cs.DS

Abstract: Parameterized runtime analysis seeks to understand the influence of problem structure on algorithmic runtime. In this paper, we contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We investigate the structural properties in TSP instances that influence the optimization process of evolutionary algorithms and use this information to bound the runtime of simple evolutionary algorithms. Our analysis studies the runtime in dependence of the number of inner points $k$ and shows that $(\mu + \lambda)$ evolutionary algorithms solve the Euclidean TSP in expected time $O((\mu/\lambda) \cdot n3\gamma(\epsilon) + n\gamma(\epsilon) + (\mu/\lambda) \cdot n{4k}(2k-1)!)$ where $\gamma$ is a function of the minimum angle $\epsilon$ between any three points. Finally, our analysis provides insights into designing a mutation operator that improves the upper bound on expected runtime. We show that a mixed mutation strategy that incorporates both 2-opt moves and permutation jumps results in an upper bound of $O((\mu/\lambda) \cdot n3\gamma(\epsilon) + n\gamma(\epsilon) + (\mu/\lambda) \cdot n{2k}(k-1)!)$ for the $(\mu+\lambda)$ EA.

Citations (2)

Summary

We haven't generated a summary for this paper yet.