Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spherical Functions: The Spheres Vs. The Projective Spaces (1207.0024v1)

Published 29 Jun 2012 in math.RT and math.CA

Abstract: In this paper we establish a close relationship between the spherical functions of the $n$-dimensional sphere $Sn\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the $n$-dimensional real projective space $Pn(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for $n$ odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type $\gamma\in\hat {\mathrm{O}}(n)$. When $n$ is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.

Summary

We haven't generated a summary for this paper yet.