Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable noise and dimensionality reduction for sparse Gaussian processes (1206.6873v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: The sparse pseudo-input Gaussian process (SPGP) is a new approximation method for speeding up GP regression in the case of a large number of data points N. The approximation is controlled by the gradient optimization of a small set of M `pseudo-inputs', thereby reducing complexity from N3 to NM2. One limitation of the SPGP is that this optimization space becomes impractically big for high dimensional data sets. This paper addresses this limitation by performing automatic dimensionality reduction. A projection of the input space to a low dimensional space is learned in a supervised manner, alongside the pseudo-inputs, which now live in this reduced space. The paper also investigates the suitability of the SPGP for modeling data with input-dependent noise. A further extension of the model is made to make it even more powerful in this regard - we learn an uncertainty parameter for each pseudo-input. The combination of sparsity, reduced dimension, and input-dependent noise makes it possible to apply GPs to much larger and more complex data sets than was previously practical. We demonstrate the benefits of these methods on several synthetic and real world problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Edward Snelson (1 paper)
  2. Zoubin Ghahramani (108 papers)
Citations (76)

Summary

We haven't generated a summary for this paper yet.