Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimating the Hessian by Back-propagating Curvature

Published 27 Jun 2012 in cs.LG and stat.ML | (1206.6464v2)

Abstract: In this work we develop Curvature Propagation (CP), a general technique for efficiently computing unbiased approximations of the Hessian of any function that is computed using a computational graph. At the cost of roughly two gradient evaluations, CP can give a rank-1 approximation of the whole Hessian, and can be repeatedly applied to give increasingly precise unbiased estimates of any or all of the entries of the Hessian. Of particular interest is the diagonal of the Hessian, for which no general approach is known to exist that is both efficient and accurate. We show in experiments that CP turns out to work well in practice, giving very accurate estimates of the Hessian of neural networks, for example, with a relatively small amount of work. We also apply CP to Score Matching, where a diagonal of a Hessian plays an integral role in the Score Matching objective, and where it is usually computed exactly using inefficient algorithms which do not scale to larger and more complex models.

Citations (75)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.