Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Preference Flips in Commerce Search (1206.6440v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: Traditional approaches to ranking in web search follow the paradigm of rank-by-score: a learned function gives each query-URL combination an absolute score and URLs are ranked according to this score. This paradigm ensures that if the score of one URL is better than another then one will always be ranked higher than the other. Scoring contradicts prior work in behavioral economics that showed that users' preferences between two items depend not only on the items but also on the presented alternatives. Thus, for the same query, users' preference between items A and B depends on the presence/absence of item C. We propose a new model of ranking, the Random Shopper Model, that allows and explains such behavior. In this model, each feature is viewed as a Markov chain over the items to be ranked, and the goal is to find a weighting of the features that best reflects their importance. We show that our model can be learned under the empirical risk minimization framework, and give an efficient learning algorithm. Experiments on commerce search logs demonstrate that our algorithm outperforms scoring-based approaches including regression and listwise ranking.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Or Sheffet (24 papers)
  2. Nina Mishra (6 papers)
  3. Samuel Ieong (3 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.