Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs (1206.6390v1)

Published 27 Jun 2012 in cs.AI, cs.CE, and cs.LG

Abstract: We consider the incorporation of causal knowledge about the presence or absence of (possibly indirect) causal relations into a causal model. Such causal relations correspond to directed paths in a causal model. This type of knowledge naturally arises from experimental data, among others. Specifically, we consider the formalisms of Causal Bayesian Networks and Maximal Ancestral Graphs and their Markov equivalence classes: Partially Directed Acyclic Graphs and Partially Oriented Ancestral Graphs. We introduce sound and complete procedures which are able to incorporate causal prior knowledge in such models. In simulated experiments, we show that often considering even a few causal facts leads to a significant number of new inferences. In a case study, we also show how to use real experimental data to infer causal knowledge and incorporate it into a real biological causal network. The code is available at mensxmachina.org.

Citations (36)

Summary

We haven't generated a summary for this paper yet.