Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Microcanonical Origin of the Maximum Entropy Principle for Open Systems (1206.5888v1)

Published 26 Jun 2012 in cond-mat.stat-mech

Abstract: The canonical ensemble describes an open system in equilibrium with a heat bath of fixed temperature. The probability distribution of such a system, the Boltzmann distribution, is derived from the uniform probability distribution of the closed universe consisting of the open system and the heat bath, by taking the limit where the heat bath is much larger than the system of interest. Alternatively, the Boltzmann distribution can be derived from the Maximum Entropy Principle, where the Gibbs-Shannon entropy is maximized under the constraint that the mean energy of the open system is fixed. To make the connection between these two apparently distinct methods for deriving the Boltzmann distribution, it is first shown that the uniform distribution for a microcanonical distribution is obtained from the Maximum Entropy Principle applied to a closed system. Then I show that the target function in the Maximum Entropy Principle for the open system, is obtained by partial maximization of Gibbs-Shannon entropy of the closed universe over the microstate probability distributions of the heat bath. Thus, microcanonical origin of the Entropy Maximization procedure for an open system, is established in a rigorous manner, showing the equivalence between apparently two distinct approaches for deriving the Boltzmann distribution. By extending the mathematical formalism to dynamical paths, the result may also provide an alternative justification for the principle of path entropy maximization as well.

Summary

We haven't generated a summary for this paper yet.