Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Bayes Pachinko Allocation (1206.5270v1)

Published 20 Jun 2012 in cs.IR, cs.LG, and stat.ML

Abstract: Recent advances in topic models have explored complicated structured distributions to represent topic correlation. For example, the pachinko allocation model (PAM) captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). While PAM provides more flexibility and greater expressive power than previous models like latent Dirichlet allocation (LDA), it is also more difficult to determine the appropriate topic structure for a specific dataset. In this paper, we propose a nonparametric Bayesian prior for PAM based on a variant of the hierarchical Dirichlet process (HDP). Although the HDP can capture topic correlations defined by nested data structure, it does not automatically discover such correlations from unstructured data. By assuming an HDP-based prior for PAM, we are able to learn both the number of topics and how the topics are correlated. We evaluate our model on synthetic and real-world text datasets, and show that nonparametric PAM achieves performance matching the best of PAM without manually tuning the number of topics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei Li (1122 papers)
  2. David Blei (40 papers)
  3. Andrew McCallum (132 papers)
Citations (90)

Summary

We haven't generated a summary for this paper yet.