Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tractable Approach to Finding Closest Truncated-commute-time Neighbors in Large Graphs (1206.5259v1)

Published 20 Jun 2012 in cs.SI, cs.DS, and physics.soc-ph

Abstract: Recently there has been much interest in graph-based learning, with applications in collaborative filtering for recommender networks, link prediction for social networks and fraud detection. These networks can consist of millions of entities, and so it is very important to develop highly efficient techniques. We are especially interested in accelerating random walk approaches to compute some very interesting proximity measures of these kinds of graphs. These measures have been shown to do well empirically (Liben-Nowell & Kleinberg, 2003; Brand, 2005). We introduce a truncated variation on a well-known measure, namely commute times arising from random walks on graphs. We present a very novel algorithm to compute all interesting pairs of approximate nearest neighbors in truncated commute times, without computing it between all pairs. We show results on both simulated and real graphs of size up to 100; 000 entities, which indicate near-linear scaling in computation time.

Citations (88)

Summary

We haven't generated a summary for this paper yet.