Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new parameter Learning Method for Bayesian Networks with Qualitative Influences (1206.5245v1)

Published 20 Jun 2012 in cs.AI, cs.LG, and stat.ME

Abstract: We propose a new method for parameter learning in Bayesian networks with qualitative influences. This method extends our previous work from networks of binary variables to networks of discrete variables with ordered values. The specified qualitative influences correspond to certain order restrictions on the parameters in the network. These parameters may therefore be estimated using constrained maximum likelihood estimation. We propose an alternative method, based on the isotonic regression. The constrained maximum likelihood estimates are fairly complicated to compute, whereas computation of the isotonic regression estimates only requires the repeated application of the Pool Adjacent Violators algorithm for linear orders. Therefore, the isotonic regression estimator is to be preferred from the viewpoint of computational complexity. Through experiments on simulated and real data, we show that the new learning method is competitive in performance to the constrained maximum likelihood estimator, and that both estimators improve on the standard estimator.

Citations (17)

Summary

We haven't generated a summary for this paper yet.