Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Codes and the Cartier Operator (1206.4728v2)

Published 20 Jun 2012 in math.NT, cs.IT, math.AG, and math.IT

Abstract: In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier Codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-known property satisfied by classical Goppa codes extends naturally to Cartier codes. We prove general lower bounds for the dimension and the minimum distance of these codes and compare our construction with a classical one: the subfield subcodes of Algebraic Geometry codes. We prove that every Cartier code is contained in a subfield subcode of an Algebraic Geometry code and that the two constructions have similar asymptotic performances. We also show that some known results on subfield subcodes of Algebraic Geometry codes can be proved nicely by using properties of the Cartier operator and that some known bounds on the dimension of subfield subcodes of Algebraic Geometry codes can be improved thanks to Cartier codes and the Cartier operator.

Citations (8)

Summary

We haven't generated a summary for this paper yet.