Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LPQP for MAP: Putting LP Solvers to Better Use (1206.4681v1)

Published 18 Jun 2012 in cs.LG and stat.ML

Abstract: MAP inference for general energy functions remains a challenging problem. While most efforts are channeled towards improving the linear programming (LP) based relaxation, this work is motivated by the quadratic programming (QP) relaxation. We propose a novel MAP relaxation that penalizes the Kullback-Leibler divergence between the LP pairwise auxiliary variables, and QP equivalent terms given by the product of the unaries. We develop two efficient algorithms based on variants of this relaxation. The algorithms minimize the non-convex objective using belief propagation and dual decomposition as building blocks. Experiments on synthetic and real-world data show that the solutions returned by our algorithms substantially improve over the LP relaxation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.