Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Principal Direction Trees (1206.4668v1)

Published 18 Jun 2012 in cs.LG, cs.DS, and stat.ML

Abstract: We introduce a new spatial data structure for high dimensional data called the \emph{approximate principal direction tree} (APD tree) that adapts to the intrinsic dimension of the data. Our algorithm ensures vector-quantization accuracy similar to that of computationally-expensive PCA trees with similar time-complexity to that of lower-accuracy RP trees. APD trees use a small number of power-method iterations to find splitting planes for recursively partitioning the data. As such they provide a natural trade-off between the running-time and accuracy achieved by RP and PCA trees. Our theoretical results establish a) strong performance guarantees regardless of the convergence rate of the power-method and b) that $O(\log d)$ iterations suffice to establish the guarantee of PCA trees when the intrinsic dimension is $d$. We demonstrate this trade-off and the efficacy of our data structure on both the CPU and GPU.

Citations (22)

Summary

We haven't generated a summary for this paper yet.