Papers
Topics
Authors
Recent
Search
2000 character limit reached

Manifold Relevance Determination

Published 18 Jun 2012 in cs.LG, cs.CV, and stat.ML | (1206.4610v1)

Abstract: In this paper we present a fully Bayesian latent variable model which exploits conditional nonlinear(in)-dependence structures to learn an efficient latent representation. The latent space is factorized to represent shared and private information from multiple views of the data. In contrast to previous approaches, we introduce a relaxation to the discrete segmentation and allow for a "softly" shared latent space. Further, Bayesian techniques allow us to automatically estimate the dimensionality of the latent spaces. The model is capable of capturing structure underlying extremely high dimensional spaces. This is illustrated by modelling unprocessed images with tenths of thousands of pixels. This also allows us to directly generate novel images from the trained model by sampling from the discovered latent spaces. We also demonstrate the model by prediction of human pose in an ambiguous setting. Our Bayesian framework allows us to perform disambiguation in a principled manner by including latent space priors which incorporate the dynamic nature of the data.

Citations (109)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.