Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Order Game Dynamics (1206.4181v2)

Published 19 Jun 2012 in math.OC, cs.GT, and math.DS

Abstract: Continuous-time game dynamics are typically first order systems where payoffs determine the growth rate of the players' strategy shares. In this paper, we investigate what happens beyond first order by viewing payoffs as higher order forces of change, specifying e.g. the acceleration of the players' evolution instead of its velocity (a viewpoint which emerges naturally when it comes to aggregating empirical data of past instances of play). To that end, we derive a wide class of higher order game dynamics, generalizing first order imitative dynamics, and, in particular, the replicator dynamics. We show that strictly dominated strategies become extinct in n-th order payoff-monotonic dynamics n orders as fast as in the corresponding first order dynamics; furthermore, in stark contrast to first order, weakly dominated strategies also become extinct for n>1. All in all, higher order payoff-monotonic dynamics lead to the elimination of weakly dominated strategies, followed by the iterated deletion of strictly dominated strategies, thus providing a dynamic justification of the well-known epistemic rationalizability process of Dekel and Fudenberg (1990). Finally, we also establish a higher order analogue of the folk theorem of evolutionary game theory, and we show that con- vergence to strict equilibria in n-th order dynamics is n orders as fast as in first order.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rida Laraki (22 papers)
  2. Panayotis Mertikopoulos (90 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.