Papers
Topics
Authors
Recent
2000 character limit reached

Hardness of Vertex Deletion and Project Scheduling

Published 15 Jun 2012 in cs.CC | (1206.3408v1)

Abstract: Assuming the Unique Games Conjecture, we show strong inapproximability results for two natural vertex deletion problems on directed graphs: for any integer $k\geq 2$ and arbitrary small $\epsilon > 0$, the Feedback Vertex Set problem and the DAG Vertex Deletion problem are inapproximable within a factor $k-\epsilon$ even on graphs where the vertices can be almost partitioned into $k$ solutions. This gives a more structured and therefore stronger UGC-based hardness result for the Feedback Vertex Set problem that is also simpler (albeit using the "It Ain't Over Till It's Over" theorem) than the previous hardness result. In comparison to the classical Feedback Vertex Set problem, the DAG Vertex Deletion problem has received little attention and, although we think it is a natural and interesting problem, the main motivation for our inapproximability result stems from its relationship with the classical Discrete Time-Cost Tradeoff Problem. More specifically, our results imply that the deadline version is NP-hard to approximate within any constant assuming the Unique Games Conjecture. This explains the difficulty in obtaining good approximation algorithms for that problem and further motivates previous alternative approaches such as bicriteria approximations.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.