Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted-{$\ell_1$} minimization with multiple weighting sets (1205.6845v1)

Published 30 May 2012 in cs.IT and math.IT

Abstract: In this paper, we study the support recovery conditions of weighted $\ell_1$ minimization for signal reconstruction from compressed sensing measurements when multiple support estimate sets with different accuracy are available. We identify a class of signals for which the recovered vector from $\ell_1$ minimization provides an accurate support estimate. We then derive stability and robustness guarantees for the weighted $\ell_1$ minimization problem with more than one support estimate. We show that applying a smaller weight to support estimate that enjoy higher accuracy improves the recovery conditions compared with the case of a single support estimate and the case with standard, i.e., non-weighted, $\ell_1$ minimization. Our theoretical results are supported by numerical simulations on synthetic signals and real audio signals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hassan Mansour (32 papers)
  2. Ozgur Yilmaz (31 papers)

Summary

We haven't generated a summary for this paper yet.