Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure and Overlaps of Communities in Networks (1205.6228v2)

Published 28 May 2012 in cs.SI and physics.soc-ph

Abstract: One of the main organizing principles in real-world social, information and technological networks is that of network communities, where sets of nodes organize into densely linked clusters. Even though detection of such communities is of great interest, understanding the structure communities in large networks remains relatively limited. Due to unavailability of labeled ground-truth data it is practically impossible to evaluate and compare different models and notions of communities on a large scale. In this paper we identify 6 large social, collaboration, and information networks where nodes explicitly state their community memberships. We define ground-truth communities by using these explicit memberships. We then empirically study how such ground-truth communities emerge in networks and how they overlap. We observe some surprising phenomena. First, ground-truth communities contain high-degree hub nodes that reside in community overlaps and link to most of the members of the community. Second, the overlaps of communities are more densely connected than the non-overlapping parts of communities, in contrast to the conventional wisdom that community overlaps are more sparsely connected than the communities themselves. Existing models of network communities do not capture dense community overlaps. We present the Community-Affiliation Graph Model (AGM), a conceptual model of network community structure, which reliably captures the overall structure of networks as well as the overlapping nature of network communities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jaewon Yang (16 papers)
  2. Jure Leskovec (233 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.