Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Hypothesis Test for Sparse Support Recovery using Belief Propagation (1205.3020v2)

Published 14 May 2012 in cs.IT and math.IT

Abstract: In this paper, we introduce a new support recovery algorithm from noisy measurements called Bayesian hypothesis test via belief propagation (BHT-BP). BHT-BP focuses on sparse support recovery rather than sparse signal estimation. The key idea behind BHT-BP is to detect the support set of a sparse vector using hypothesis test where the posterior densities used in the test are obtained by aid of belief propagation (BP). Since BP provides precise posterior information using the noise statistic, BHT-BP can recover the support with robustness against the measurement noise. In addition, BHT-BP has low computational cost compared to the other algorithms by the use of BP. We show the support recovery performance of BHT-BP on the parameters (N; M; K; SNR) and compare the performance of BHT-BP to OMP and Lasso via numerical results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.