Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Ordinal Boltzmann Machines for Collaborative Filtering (1205.2611v1)

Published 9 May 2012 in cs.IR and cs.LG

Abstract: Collaborative filtering is an effective recommendation technique wherein the preference of an individual can potentially be predicted based on preferences of other members. Early algorithms often relied on the strong locality in the preference data, that is, it is enough to predict preference of a user on a particular item based on a small subset of other users with similar tastes or of other items with similar properties. More recently, dimensionality reduction techniques have proved to be equally competitive, and these are based on the co-occurrence patterns rather than locality. This paper explores and extends a probabilistic model known as Boltzmann Machine for collaborative filtering tasks. It seamlessly integrates both the similarity and co-occurrence in a principled manner. In particular, we study parameterisation options to deal with the ordinal nature of the preferences, and propose a joint modelling of both the user-based and item-based processes. Experiments on moderate and large-scale movie recommendation show that our framework rivals existing well-known methods.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.