Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Method For Speech Segmentation Based On Speakers' Characteristics (1205.1794v1)

Published 8 May 2012 in cs.AI and cs.CL

Abstract: Speech Segmentation is the process change point detection for partitioning an input audio stream into regions each of which corresponds to only one audio source or one speaker. One application of this system is in Speaker Diarization systems. There are several methods for speaker segmentation; however, most of the Speaker Diarization Systems use BIC-based Segmentation methods. The main goal of this paper is to propose a new method for speaker segmentation with higher speed than the current methods - e.g. BIC - and acceptable accuracy. Our proposed method is based on the pitch frequency of the speech. The accuracy of this method is similar to the accuracy of common speaker segmentation methods. However, its computation cost is much less than theirs. We show that our method is about 2.4 times faster than the BIC-based method, while the average accuracy of pitch-based method is slightly higher than that of the BIC-based method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Behrouz Abdolali (1 paper)
  2. Hossein Sameti (19 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.