Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalising unit-refutation completeness and SLUR via nested input resolution (1204.6529v5)

Published 29 Apr 2012 in cs.LO and cs.AI

Abstract: We introduce two hierarchies of clause-sets, SLUR_k and UC_k, based on the classes SLUR (Single Lookahead Unit Refutation), introduced in 1995, and UC (Unit refutation Complete), introduced in 1994. The class SLUR, introduced in [Annexstein et al, 1995], is the class of clause-sets for which unit-clause-propagation (denoted by r_1) detects unsatisfiability, or where otherwise iterative assignment, avoiding obviously false assignments by look-ahead, always yields a satisfying assignment. It is natural to consider how to form a hierarchy based on SLUR. Such investigations were started in [Cepek et al, 2012] and [Balyo et al, 2012]. We present what we consider the "limit hierarchy" SLUR_k, based on generalising r_1 by r_k, that is, using generalised unit-clause-propagation introduced in [KuLLMann, 1999, 2004]. The class UC, studied in [Del Val, 1994], is the class of Unit refutation Complete clause-sets, that is, those clause-sets for which unsatisfiability is decidable by r_1 under any falsifying assignment. For unsatisfiable clause-sets F, the minimum k such that r_k determines unsatisfiability of F is exactly the "hardness" of F, as introduced in [Ku 99, 04]. For satisfiable F we use now an extension mentioned in [Ansotegui et al, 2008]: The hardness is the minimum k such that after application of any falsifying partial assignments, r_k determines unsatisfiability. The class UC_k is given by the clause-sets which have hardness <= k. We observe that UC_1 is exactly UC. UC_k has a proof-theoretic character, due to the relations between hardness and tree-resolution, while SLUR_k has an algorithmic character. The correspondence between r_k and k-times nested input resolution (or tree resolution using clause-space k+1) means that r_k has a dual nature: both algorithmic and proof theoretic. This corresponds to a basic result of this paper, namely SLUR_k = UC_k.

Citations (19)

Summary

We haven't generated a summary for this paper yet.