Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conflict-free coloring with respect to a subset of intervals (1204.6422v1)

Published 28 Apr 2012 in math.CO, cs.DM, and cs.DS

Abstract: Given a hypergraph H = (V, E), a coloring of its vertices is said to be conflict-free if for every hyperedge S \in E there is at least one vertex in S whose color is distinct from the colors of all other vertices in S. The discrete interval hypergraph Hn is the hypergraph with vertex set {1,...,n} and hyperedge set the family of all subsets of consecutive integers in {1,...,n}. We provide a polynomial time algorithm for conflict-free coloring any subhypergraph of Hn, we show that the algorithm has approximation ratio 2, and we prove that our analysis is tight, i.e., there is a subhypergraph for which the algorithm computes a solution which uses twice the number of colors of the optimal solution. We also show that the problem of deciding whether a given subhypergraph of Hn can be colored with at most k colors has a quasipolynomial time algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.