Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Loosely Connected Markov Random Fields (1204.5540v3)

Published 25 Apr 2012 in stat.ML

Abstract: We consider the structure learning problem for graphical models that we call loosely connected Markov random fields, in which the number of short paths between any pair of nodes is small, and present a new conditional independence test based algorithm for learning the underlying graph structure. The novel maximization step in our algorithm ensures that the true edges are detected correctly even when there are short cycles in the graph. The number of samples required by our algorithm is C*log p, where p is the size of the graph and the constant C depends on the parameters of the model. We show that several previously studied models are examples of loosely connected Markov random fields, and our algorithm achieves the same or lower computational complexity than the previously designed algorithms for individual cases. We also get new results for more general graphical models, in particular, our algorithm learns general Ising models on the Erdos-Renyi random graph G(p, c/p) correctly with running time O(np5).

Citations (20)

Summary

We haven't generated a summary for this paper yet.