Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Join Levels of the Trotter-Weil Hierarchy are Decidable (1204.4672v1)

Published 20 Apr 2012 in cs.FL

Abstract: The variety DA of finite monoids has a huge number of different characterizations, ranging from two-variable first-order logic FO2 to unambiguous polynomials. In order to study the structure of the subvarieties of DA, Trotter and Weil considered the intersection of varieties of finite monoids with bands, i.e., with idempotent monoids. The varieties of idempotent monoids are very well understood and fully classified. Trotter and Weil showed that for every band variety V there exists a unique maximal variety W inside DA such that the intersection with bands yields the given band variety V. These maximal varieties W define the Trotter-Weil hierarchy. This hierarchy is infinite and it exhausts DA; induced by band varieties, it naturally has a zigzag shape. In their paper, Trotter and Weil have shown that the corners and the intersection levels of this hierarchy are decidable. In this paper, we give a single identity of omega-terms for every join level of the Trotter-Weil hierarchy; this yields decidability. Moreover, we show that the join levels and the subsequent intersection levels do not coincide. Almeida and Azevedo have shown that the join of R-trivial and L-trivial finite monoids is decidable; this is the first non-trivial join level of the Trotter-Weil hierarchy. We extend this result to the other join levels of the Trotter-Weil hierarchy. At the end of the paper, we give two applications. First, we show that the hierarchy of deterministic and codeterministic products is decidable. And second, we show that the direction alternation depth of unambiguous interval logic is decidable.

Citations (11)

Summary

We haven't generated a summary for this paper yet.