Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normality and Finite-state Dimension of Liouville numbers (1204.4104v2)

Published 18 Apr 2012 in cs.IT and math.IT

Abstract: Liouville numbers were the first class of real numbers which were proven to be transcendental. It is easy to construct non-normal Liouville numbers. Kano and Bugeaud have proved, using analytic techniques, that there are normal Liouville numbers. Here, for a given base k >= 2, we give two simple constructions of a Liouville number which is normal to the base k. The first construction is combinatorial, and is based on de Bruijn sequences. A real number in the unit interval is normal if and only if its finite-state dimension is 1. We generalize our construction to prove that for any rational r in the closed unit interval, there is a Liouville number with finite state dimension r. This refines Staiger's result that the set of Liouville numbers has constructive Hausdorff dimension zero, showing a new quantitative classification of Liouville numbers can be attained using finite-state dimension. In the second number-theoretic construction, we use an arithmetic property of numbers - the existence of primitive roots - to construct Liouville numbers normal in finitely many bases, assuming a Generalized Artin's conjecture on primitive roots.

Citations (8)

Summary

We haven't generated a summary for this paper yet.