Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections (1204.3337v1)

Published 16 Apr 2012 in cs.IT, cs.DS, and math.IT

Abstract: This paper considers the approximate reconstruction of points, x \in RD, which are close to a given compact d-dimensional submanifold, M, of RD using a small number of linear measurements of x. In particular, it is shown that a number of measurements of x which is independent of the extrinsic dimension D suffices for highly accurate reconstruction of a given x with high probability. Furthermore, it is also proven that all vectors, x, which are sufficiently close to M can be reconstructed with uniform approximation guarantees when the number of linear measurements of x depends logarithmically on D. Finally, the proofs of these facts are constructive: A practical algorithm for manifold-based signal recovery is presented in the process of proving the two main results mentioned above.

Citations (27)

Summary

We haven't generated a summary for this paper yet.