Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesis of Minimal Error Control Software (1204.2857v1)

Published 12 Apr 2012 in cs.SY and cs.SC

Abstract: Software implementations of controllers for physical systems are at the core of many embedded systems. The design of controllers uses the theory of dynamical systems to construct a mathematical control law that ensures that the controlled system has certain properties, such as asymptotic convergence to an equilibrium point, while optimizing some performance criteria. However, owing to quantization errors arising from the use of fixed-point arithmetic, the implementation of this control law can only guarantee practical stability: under the actions of the implementation, the trajectories of the controlled system converge to a bounded set around the equilibrium point, and the size of the bounded set is proportional to the error in the implementation. The problem of verifying whether a controller implementation achieves practical stability for a given bounded set has been studied before. In this paper, we change the emphasis from verification to automatic synthesis. Using synthesis, the need for formal verification can be considerably reduced thereby reducing the design time as well as design cost of embedded control software. We give a methodology and a tool to synthesize embedded control software that is Pareto optimal w.r.t. both performance criteria and practical stability regions. Our technique is a combination of static analysis to estimate quantization errors for specific controller implementations and stochastic local search over the space of possible controllers using particle swarm optimization. The effectiveness of our technique is illustrated using examples of various standard control systems: in most examples, we achieve controllers with close LQR-LQG performance but with implementation errors, hence regions of practical stability, several times as small.

Citations (32)

Summary

We haven't generated a summary for this paper yet.